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Simulated aeroelastic responses of a nonlinear pitch and plunge apparatus are analyzed
using various statistical signal processing techniques including higher-order spectral meth-
ods. A MATLAB version of the Nonlinear Aeroelastic Testbed Apparatus (NATA) at the
Texas A&M University is used to generate various aeroelastic response data including limit
cycle oscillations (LCO). Traditional and higher-order spectral (HOS) methods are applied
to the simulated aeroelastic responses. Higher-order spectral methods are used to identify
critical signatures that indicate the transition from linear to nonlinear (LCO) aeroelastic
behavior.

Introduction

The study of nonlinear aeroelastic phenomena, in particular that of limit cycle oscillations (LCO), has
become an important field of study in recent years.1 A major motivating factor for this increased interest is
the fact that several operational aircraft continue to experience LCO within their flight envelope, often leading
to a flight restriction or performance degradation.2,3 Several researchers have been using the Nonlinear
Aeroelastic Testbed Apparatus (NATA) at Texas A&M University’s Low-Speed Wind Tunnel to investigate
fundamental aspects of LCO behavior.4–9

Recently, higher-order spectral methods have been applied to experimental flutter measurements from
wind-tunnel data10 and flight test data.11 Analyses using higher-order spectral methods are proving beneficial
to improved understanding of nonlinear aeroelastic phenomena. Higher-order spectral methods enable the
visualization of the transfer of energy from one frequency to another, a hallmark of nonlinear phenomena
that is not visible using traditional spectral methods.

The paper is organized as follows. A detailed description of the NATA and its MATLAB model are
provided, including the equations of motion that define the dynamics of the system. A description of higher-
order spectral (HOS) methods is provided, including an illustrative example. Simulated data generated
using a variety of control surface inputs are then analyzed using traditional and HOS methods. The issue
of the Gaussianess of an input/output combination for identifying regions of linear and nonlinear behavior
is presented and applied.

Nonlinear Aeroelastic Testbed Apparatus (NATA)

The NATA in the Texas A&M University’s 2 ft. x 3 ft. Low Speed Wind Tunnel is used to generate
free and controlled, linear and nonlinear aeroelastic transients at various conditions. Based on a simple
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two-degree-of-freedom concept with structurally nonlinear components, a rigid wing mounted on the NATA
can exhibit nonlinear aeroelastic behavior, including LCO phenomena. The pitch and plunge motions of the
NATA are enabled by springs that can be tuned to a wide variety of nonlinear stiffness characteristics. The
NATA is shown in figure 1.

Figure 1. Schematic of the Nonlinear Aeroelastic Testbed Apparatus (NATA).

A rigid wing attached to the NATA, as it would be mounted in the Low Speed Wind Tunnel, is shown
in figure 2. The nonlinear structural response is governed by a pair of cams that can be tuned to model
various types of polynomial stiffness functions. Additional details regarding the NATA are available in the
references.4–8

Analytical Model of NATA

A MATLAB model of the NATA/rigid wing system was generated and is briefly discussed in this section.
The equations of motion for the system are presented as Eq. 1[
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where

mT total mass (wing and NATA)
mw mass of the wing
xα static unbalance
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Figure 2. Schematic of the Nonlinear Aeroelastic Testbed Apparatus (NATA) with rigid airfoil and control
surface.

b semichord
Iα mass moment of inertia about the elastic axis
h plunge degree of freedom
α pitch degree of freedom
ch plunge damping coefficient
cα pitch damping coefficient
kh plunge stiffness coefficient
kα pitch stiffness coefficient
L lift
M moment

The lift (L) and moment (M) on the right-hand side of Eq. 1 are defined using quasi-steady aerodynamics
as presented in Eq. 2 and Eq. 3.
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where

ρ density
U freestream velocity
clα lift due to angle of attack
clβ lift due to control surface deflection
β control surface deflection
cmα moment due to angle of attack
cmβ moment due to control surface deflection
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Higher-Order Spectra

The primary benefit of higher-order spectra (HOS), also known as higher-order frequency response func-
tions, is that they provide information regarding the interaction of frequencies due to a nonlinear process.
For example, bispectra have been used in the study of grid-generated turbulence to identify the nonlinear ex-
change of energy from one frequency to another (related to the turbulent cascade phenomenon). Traditional,
or standard, concepts, by definition, cannot provide this type of information. In addition, higher-order spec-
tra are the frequency-domain version of the Volterra series. For details regarding this relationship, the reader
is referred to the recent article by Silva.12 Some very interesting and fundamental applications using the
frequency-domain Volterra theory13,14 and experimental applications of Volterra methods15,16 are providing
new “windows” on the world of nonlinear aeroelasticity.

In the recent work by Hajj and Silva,17,18 the aerodynamic and structural aspects of the flutter phe-
nomenon of a wind-tunnel model are determined via a frequency domain analysis based on a hierarchy of
spectral moments. The power spectrum is used to determine the distribution of power among the frequency
components in the pressure, strain and acceleration data. The cross-power spectrum, linear coherence, and
phase relation of the same frequency components between different signals are used to characterize the
bending and torsion characteristics of the model. The nonlinear aspects of the aerodynamic loading are
determined from estimates of higher-order spectral moments, namely, the auto- and cross-bispectrum.

For a discrete, stationary, real-valued, zero-mean process, the auto-bispectrum is estimated as19

B̂xxx[l1, l2] =
1
M

M∑
k=1

X
(k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
T [l2] (4)

where X
(k)
T [l] is the Discrete Fourier Transform of the kth ensemble of the time series x(t) taken over a

time, T , and M is the number of these ensembles. The auto-bispectrum of a signal is a two-dimensional
function of frequency and is generally complex-valued. In averaging over many ensembles, the magnitude of
the auto-bispectrum will be determined by the presence (or absence) of a phase relationship among sets of
the frequency components at l1, l2, and l1 + l2. If there is a random phase relationship among these three
components, the auto-bispectrum will average to a very small value. Should a phase relationship exist among
these frequency components, the corresponding auto-bispectrum will have a large magnitude.20 Because a
quadratic nonlinear interaction between two frequency components, l1 and l2, yields a phase relation between
them and their summed component, l1 + l2, the auto-bispectrum can be used to detect a quadratic coupling
or interaction among different frequency components of a signal. The level of such coupling in a signal
can then be associated with a normalized quantity of the auto-bispectrum, called the auto-bicoherence, and
defined as

b2
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By the Schwarz inequality, the value of b2
xxx[l1, l2] varies between zero and one. If no phase relationship

exists among the frequency components at l1, l2, and l1 + l2, the value of the auto-bicoherence will be at or
near zero (due to averaging effects). If a phase relationship does exist among the frequency components at
l1, l2, and l1 + l2, then the value of the auto-bicoherence will be near unity. Values of the auto-bicoherence
between zero and one indicate partial quadratic coupling.

For systems where multiple signals are considered, detection of nonlinearities can be achieved by using
the cross-spectral moments. For two signals x(t) and y(t), their cross-bispectrum is estimated as

B̂yxx[l1, l2] =
1
M

M∑
k=1

Y
(k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
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where X
(k)
T [l] and Y

(k)
T [l] are the Discrete Fourier Transforms of the kth ensemble of the time series x(t)

and y(t), respectively, over a time, T . The cross-bispectrum provides a measure of the nonlinear relationship
among the frequency components at l1 and l2 in x(t) and their summed frequency component, l1 + l2, in
y(t). Similar to the auto-bispectrum, the cross-bispectrum of signals x(t) and y(t) is a two-dimensional
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function in frequency and is generally complex-valued. In averaging over many ensembles, the magnitude
of the cross-bispectrum will also be determined by the presence, or absence, of a phase relationship among
sets of the frequency components at l1, l2, and l1 + l2. If there is a random phase relationship among the
three components, the cross-bispectrum will average to a very small value. Should a phase relationship exist
among these frequency components, the corresponding cross-bispectral value will have a large magnitude.
The cross-bispectrum is thus able to detect nonlinear phase coupling among different frequency components
in two signals because of its phase-preserving effect.

Similar to defining the auto-bicoherence, one can define a normalized cross-bispectrum to quantify the
level of quadratic coupling in two signals. This normalized value is called the cross-bicoherence and is defined
as

b2
yxx[l1, l2]=

∣∣∣B̂yxx[l1, l2]
∣∣∣2

1
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If no phase relationship exists among the frequency components at l1, l2 in x(t) and the frequency
component at l1 + l2 in y(t), the value of the cross-bicoherence will be at or near zero. If a phase relationship
does exist among these frequency components, the value of the cross-bicoherence will be near unity. Values
of cross-bicoherence between zero and one indicate partial quadratic coupling. A digital procedure for
computing the auto and cross-bicoherence is given by Kim and Powers19 and is summarized by Hajj et al.21

An important property of HOS functions involves the Gaussianess of a signal. The auto-bicoherence of a
Gaussian signal is identically zero. This is an important theoretical result that is described in the literature.
In addition, it is well-known that if a Gaussian signal is input to a linear system, then the output will be
Gaussian as well. Therefore, computation of the auto-bicoherence for a Gaussian output will yield a value at
or near zero, indicative of a linear process. If a Gaussian signal is applied to a nonlinear system, the output
will be non-Gaussian. As a result, the auto-bicoherence for the output of the nonlinear system will yield
a non-zero value. This characteristic of HOS methods is exploited for the present application to identify
regions where the behavior is transitioning from linear to nonlinear dynamics.

Using a linear (Eq. 8) and a nonlinear differential equation (van der Pol oscillator, Eq. 9), the effect of
nonlinear processes on input Gaussian distributions can be demonstrated. A Gaussian signal is input to
the linear and nonlinear differential equations. The histogram of the response for each system (linear and
nonlinear) to the Gaussian input signal is presented in the following figures.

Presented in Figure 3 are the input and output histograms for the linear system. As can be seen, the
linear system preserves the Gaussianess of the input signal. Presented in Figure 4 are the input and output
histograms for the nonlinear system. For the nonlinear case, the Gaussianess of the input signal has not
been preserved and has, instead, been transformed into a non-Gaussian distribution radically different from
the input distribution. This is a well-known characteristic of nonlinear systems. It is worthwhile to mention
that the response of the van der Pol oscillator (the nonlinear ODE) is a limit cycle oscillation (LCO). It
appears that the distribution for other LCO phenomena may have a similar structure.

HOS methods are very sensitive to variations in Gaussianess and, as will be shown, are valuable in
identifying deviations from Gaussian behavior. Deviations from Gaussian behavior, as shown above, indicate
the existence of a nonlinear process.

ẏ1 = y2, ẏ2 = −y2 − y1 + input (8)

ẏ1 = y2, ẏ2 = −µ(1− y1)2y2 − y1 + input (9)

Example 2

A second example is now presented in order to explain some of the concepts associated with HOS. The
example22 consists of a linear (y) and a nonlinear (z) time series, both containing Gaussian noise (d). The
equations for these time series are

x(k) = sin(2π(f1)k +
π

3
) + sin(2π(f2)k +

π

8
) (10)
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Figure 3. Histograms of the input and output for the linear system due to a Gaussian input.

Figure 4. Histograms of the input and output for the nonlinear system due to a Gaussian input.
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y(k) = x(k) + d(k) (11)

z(k) = x(k) + 0.05x2(k) + d(k) (12)

where f1 = 0.12 Hz and f2 = 0.30 Hz.
Figures 5 and 6 each contain the time series and the associated magnitude of the Fourier transforms for

the linear and nonlinear time series, respectively. The dominant frequencies (in this case 0.12 and 0.30 Hz)
are clearly visible in both figures. The frequency content for the nonlinear time series indicates the existence
of additional frequencies. The nature of these frequencies, whether or not these frequencies are random or
the result of a nonlinear coupling process, cannot be discerned from this analysis.

Figure 5. Linear time series and magnitude of frequency response.

The power spectral densities (PSD) for the linear and nonlinear time series are presented as Figure 7.
Here again, the existence of additional frequencies in the PSD of the nonlinear time series (as compared to
the linear time series) is obvious. However, the PSD information cannot be used to discern if these additional
frequencies are random or the result of a nonlinear coupling process.

In order to determine if these additional frequencies are random or the result of a nonlinear coupling
process, the HOS for these time series must be computed. The magnitude of the auto-bicoherence for the
linear time series, y, is presented as Figure 8. The two frequency axes correspond to the two frequency
indices in Eq. 5. If a significant peak is observed, this implies that the sum of those two frequencies is the
result of a quadratic (nonlinear) coupling. It can be seen that the magnitude of the auto-bicoherence for
the linear time series is quite low in value (compared to unity) and that there exist no dominant peaks that
would be indicative of a nonlinear coupling.

The magnitude of the auto-bicoherence for the nonlinear time series is presented as Figure 9. In contrast
to the auto-bicoherence for the linear time series, the auto-bicoherence for the nonlinear time series has
several peaks at or close to unity, indicative of nonlinear (quadratic) coupling at the x- and y-axis frequencies
indicated.

Typically, to enhance visualization and interpretation of the auto- or cross-bicoherence , contour plots are
viewed. The contour plot for Figure 9 is presented as Figure 10. The contour plot presents the frequencies
that have coupled quadratically to generate the new frequencies that were visible in the PSD. In addition,
the symmetry associated with the computation of the auto-bicoherence, in this case, is also evident in the
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Figure 6. Nonlinear time series and magnitude of frequency response.

Figure 7. Power spectral density (PSD) functions for linear and nonlinear time series.
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Figure 8. Auto-bicoherence for the linear time series.

Figure 9. Auto-bicoherence for the nonlinear time series.
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contour plot. The bicoherence basically computes the correlation between two frequencies and the sum of
those two frequencies. For example, the magnitude of the auto-bicoherence when the first frequency (x-axis)
is 2 Hz and the second frequency (y-axis) is 5 Hz will be the same as the magnitude of the auto-bicoherence
when the first frequency is 5 Hz and the second frequency is 2 Hz since their sum is the same.

Figure 10. Contour plot of the auto-bicoherence for the nonlinear time series.

This symmetry is presented in Figure 11. As Figure 11 indicates, knowledge of Region I (two such regions
in the first quadrant) and Region II (two such regions in the fourth quadrant) is sufficient to completely
define the remainder of the quadrants due to symmetry considerations. Regions I and II indicate that the
original frequencies have been quadratically-coupled, resulting in new frequencies that are the sum (positive
and negative) of the original frequencies. The new frequencies include 0.18, 0.24, and 0.42. The limitation
of Region I to the triangle shown is due to the fact that the summation of two frequencies cannot exceed
the Nyquist frequency (0.5, in this case). Therefore, the combination of the second frequency (0.30 Hz) with
itself is not included since 0.60 Hz would be greater than the Nyquist frequency.

For subsequent results, although the auto-bicoherence is computed for all frequencies (positive and neg-
ative), Region I in the first quadrant will be of primary interest for the sake of simplicity. This will be
sufficient to demonstrate the applicability and value of HOS methods to aeroelastic data.

Results

In this section, aeroelastic transients that range from a stable response to an LCO response, generated
in MATLAB using the analytical model of the NATA, are presented. Then, in order to investigate the level
of nonlinearity for each transient, Gaussian inputs will be applied to the system via the control surface. The
output responses will be analyzed for their level of Gaussianity. Deviations from a Gaussian distribution can
be interpreted as deviations from linear behavior. The auto-bicoherence is also presented to demonstrate the
ability of HOS methods to discern Gaussianess from non-Gaussianess. For simplicity, the results presented
are limited to the pitch motion.

Figure 12 presents the aeroelastic transient in pitch for a condition where a stable aeroelastic response
is generated at a small velocity (U=5 m/sec) with small initial conditions as perturbations and no control
surface input. The aeroelastic transient is clearly stable and the frequencies of the system are evident in the
plot of the magnitude of the frequency response function of the pitch motion.

Figure 13 presents the aeroelastic transient in pitch for a condition where an LCO has been reached at a
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Figure 11. Contour plot of the auto-bicoherence for the nonlinear time series with symmetry regions identified.

Figure 12. Stable aeroelastic response in pitch at U=5 m/sec: Time domain and frequency domain.
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velocity of U=20 m/sec. The frequency content is exhibiting greater complexity than the previous aeroelastic
transient.

To determine the level of nonlinearity that may be present starting from the stable transient (U=5 m/sec)
all the way to the LCO transient (U=20 m/sec), a Gaussian input is applied via the control surface and the
resulting nature of the output transient (Gaussian or non-Gaussian) is determined. This approach serves to
demonstrate the sensitivity of HOS methods to non-Gaussian signals.

Figure 13. Limit cycle oscillation (LCO) aeroelastic response in pitch at U=20 m/sec: Time and frequency
domain.

A Gaussian input is generated and applied to the aeroelastic system via the control surface. The histogram
of the input is presented as Figure 14, where the Gaussian nature of the signal is evident. The auto-
bicoherence for the Gaussian input is presented as Figure 15. The small values of the auto-bicoherence for
the Gaussian input are as expected for a signal with a Gaussian distribution.

The resultant aeroelastic response (at U=5 m/sec) and the corresponding magnitude of the frequency
response are presented in Figure 16. The effect of the Gaussian input is evident in the transient as well as
the frequency content when Figure 16 is compared with Figure 12. However, neither of these two functions
can be used to indicate the presence or level of any nonlinear interactions. The histogram of the output
response (pitch, in this case) is presented as Figure .

The histogram for the output response indicates a noticeable deviation from the theoretical Gaussian
distribution , indicating that the Gaussian input has been processed through some level of nonlinear inter-
actions.

The auto-bicoherence for this aeroelastic response, presented as Figure 18, confirms the existence of
nonlinear coupling at frequencies close to the LCO frequency (3̃ Hz).

The velocity is increased to U=10 m/sec and the same Gaussian input is applied. The aeroelastic
response, along with the magnitude of the frequency response, is presented in Figure 19.

Once again, the information presented in Figure 19 cannot be used to discern if any nonlinear interactions
are taking place at this condition. However, the histogram of the output, presented as Figure 20, indicates
an increased level of deviation from Gaussianess.

The auto-bicoherence for this condition is presented as Figure 21, with increasing levels of nonlinear
interaction near the frequency of the LCO. The important point to be made is that both, the histograms
and the auto-bicoherence, are indicating the presence of nonlinear phenomena prior to the visible onset of
the LCO at U=20 m/sec.
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Figure 14. Histogram of the Gaussian input and theoretical Gaussian distribution (red).
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Figure 15. Auto-bicoherence of the Gaussian control surface input.
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Figure 16. Stable aeroelastic response in pitch at U=5 m/sec with Gaussian control surface input: Time and
frequency domain.

Figure 17. Histogram of stable aeroelastic response in pitch at U=5 m/sec due to Gaussian control surface
input.
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Figure 18. Auto-bicoherence of stable aeroelastic response in pitch at U=5 m/sec due to Gaussian control
surface input.

Figure 19. Stable aeroelastic response in pitch at U=10 m/sec with Gaussian control surface input: Time and
frequency domain.
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Figure 20. Histogram of stable aeroelastic response in pitch at U=10 m/sec due to Gaussian control surface
input.

Figure 21. Auto-bicoherence of stable aeroelastic response in pitch at U=10 m/sec due to Gaussian control
surface input.
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The same Gaussian control surface input was applied for the U=20 m/sec condition at which LCO is
encountered. The resulting LCO aeroelastic transient and the corresponding magnitude of the frequency
response in pitch for that conditions is presented as Figure 22. The histogram of the pitch response is
presented as Figure 23, where the deviation from Gaussianess is obvious. The resulting histogram of the
LCO pitch response is clearly non-Gaussian with a bi-modal character. Figure 24 presents the corresponding
aut-bicoherence for this condition. The auto-bicoherence for this LCO condition captures the nonlinear
interactions that occur in the vicinity of the LCO frequency with greater resolution than the previous
conditions.

Figure 22. LCO aeroelastic response in pitch at U=20 m/sec with Gaussian control surface input: Time and
frequency domain.

Therefore, using this type of information (input/output histograms and auto-bicoherence) may enable
the identification of precipitous nonlinear behavior prior to the actual onset during wind-tunnel or flight
testing. This capability would provide greater insight into the testing process as well as enhanced insight
regarding the nature of the nonlinear aeroelastic response.

Conclusion

Simulated responses from a MATLAB model of the Texas A&M University’s Nonlinear Aeroelastic
Testbed Apparatus (NATA) with a rigid wing were presented. Aeroelastic transients generated included
stable aeroelastic responses as well as nonlinear responses, or limit cycle oscillations (LCO). A Gaussian
input was applied to the system via the control surface in order to determine the deviation from Gaussian
behavior (i.e., deviation from linear behavior) of the aeroelastic system. Higher-order spectra were computed
and served to indicate the existence of nonlinear interactions prior to the LCO event.
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Figure 23. Histogram of stable aeroelastic response in pitch at U=10 m/sec due to Gaussian control surface
input.

Figure 24. Auto-bicoherence of stable aeroelastic response in pitch at U=10 m/sec due to Gaussian control
surface input.
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